부산 범내골역 이즈팰리스
신축공사 바닥충격음 성능 평가

2017. 05.
제 출 문

"부산광역시 범내골역 이즈팰리스 바닥충격음 성능 평가"에 관한 보고서로 제출합니다.

2017년 05월

한국 환경 설계 (주)

대표 이사 : 김 하 근
소음진동기술사
목 차

1 장 평가 목적 ... 1

2 장 바닥충격음 관련기준 사례 ... 1
 2.1 국내 ... 1
 2.2 일본 ... 2
 2.3 미국 ... 7
 2.4 ISO (국제 표준화 기구) .. 8
 2.5 독일 ... 9
 2.6 기타 ... 11

3 장 바닥충격음 차단성능 측정 및 평가방법 ... 12
 3.1 측정 방법 ... 12
 3.2 평가 방법 ... 18
 3.2.1 한국산업규격(안) .. 18
 3.2.2 단일수치 평가방법 산출 예 .. 22

4 장 바닥충격음 성능 평가 .. 28
 4.1 측정 개요 ... 23
 4.2 바닥충격음의 차단성능 측정 ... 27
 4.2.1 측정 방법 .. 27
 4.2.2 측정 결과 .. 27

5 장 결 론 ... 35

참고 문헌 ... 36

측정 사전 ... 37
1장 평가목적

최근 층간 소음에 대한 관심이 고조되고, 건교부에서 관련 법규를 제정(2003년 4월 22일)함에 따라 입주 예정인 아파트에 대해 바닥 충격음을 측정하였다. 측정 현장은 부산광역시 범내공역 이즈팰리스로 부산광역시 부산진구 범천동 854-2번지 외3필지를 일원에 위치하고 있다. 측정은 각 Type별로 총 5개 세대 거실에서 실시하였다. 거실은 입주 직전의 상태로서 바닥, 천장 및 벽체 등이 마감된 상태였다. 측정방법은 현장에서 바닥충격음레벨을 측정한 후 이를 관련 법규의 기준과 비교 분석하였다.

2장 바닥충격음 관련기준 사례

2.1 국내

바닥충격음에 대한 국내의 기준으로는 주택건설기준 등에 관한 규정 제14조 3항에 "공동주택의 바닥은 각 층간의 바닥충격음을 충분히 차단할 수 있는 구조로 하여야 한다."라고 선언적으로 규정되어 있었다. 그러나 최근 바닥충격음 관련 민원이 급증함에 따라 2003년 4월에 구체적인 성능기준을 대통령령으로 공포하였다. 국내 기준과 대한주택공사에서 설계목표치로 사용하고 있는 기준을 살펴보면 다음과 같다.

1) 국내 기준(2003년 4월 공포, 공포 1년 후 시행)

주택건설기준 등에 관한 규정 제14조와 관련하여 바닥충격음의 성능기준이 아래와 같이 제시되었다.

"공동주택의 바닥은 각 층간 바닥충격음이 경량충격음(비교적 가볍고 백덕한 충격에 의한 바닥충격음을 말한다)은 58데시벨 이하가 되도록 하여야 하고, 중량충격음(무겁고 부드러운 충격에 의한 바닥충격음을 말한다)은 50데시벨 이하가 되도록 하거나 건설교통부 장관이 정하여 고시하는 표준바닥구조로 하여야 한다. 이 경우 바닥충격음의 측정은 건설교통부장관이 정하여 고시하는 방법에 의한다."

이 규정은 경량충격음의 경우, 2004년 4월부터 시행되고, 중량충격음의 경우 2005년 7월부터 시행되고 있는 실정이다. 한편 평가방법은 KS 2810-1 및 2에 의해 옥타브밴드 중심주파수 중 5개 주파수(63Hz, 125Hz, 500Hz, 1kHz, 2kHz)에 대해 평가하며, 중량 및 경량충격음에 대해 단일지수(역 A특성곡선 바닥충격음 레벨)로 평가토록 되어있다.
2) 대한주택공사

1980년대 말부터 공동주택 보급이 활성화되기 시작하면서, 거주자에게 양질의 주거환경을 제공할 수 있도록 설계수준을 확보하기 위해 국내에서 처음으로 기준안을 마련하여 자체 설계목표치로 활용하였다.

그러나 최근 입주자의 바닥충격을 차단에 대한 요구 수준이 높아지면서 기준안에 대한 재검토가 필요하게 되었으며, 국내 바닥구조에 대한 실태조사와 바닥충격음에 대한 거주자의 주관적반응 설문조사, 음향심리적인 측면에서 청감실험 등을 토대로 제시한 기준의 수준은 <표 2.1>과 같다.

<표 2.1> 바닥충격을 차음성능 기준안 (대한주택공사)

<table>
<thead>
<tr>
<th>구분</th>
<th>경량충격음</th>
<th>중량충격음</th>
</tr>
</thead>
<tbody>
<tr>
<td>최저 기준 (안)</td>
<td>역A특성 가중 표준화 바닥충격음 레벨 (L'_{\text{AF,WW}}) = 58 dB (L-63수준)</td>
<td>역A특성 가중 바닥충격음 레벨 (L_{\text{Pmax,WW}}) = 50 dB (L-55수준)</td>
</tr>
<tr>
<td>생활감과의 대응</td>
<td>위층 세대의 구성원 및 생활양식 등에 따라 불만이 나타날 수도 있으나, 차음 성능상 대체로 만족하는 수준임.</td>
<td></td>
</tr>
<tr>
<td>적용 대상실</td>
<td>공동주택 상하층간 경계바닥 (거실 또는 침실)</td>
<td></td>
</tr>
<tr>
<td>외국기준과의 비교</td>
<td>HUD(미국) : ⇒ GradeⅡ(표준치) 수준</td>
<td>주택품질확보촉진법(일본) : ⇒ Rank4 수준 (차음성능 우수)</td>
</tr>
</tbody>
</table>

2.2 일본

차음등급과 생활실감과의 대응에 있어 표현을 “들린다 - 들리지 않는다”는 기본으로 한 내용으로 개정되었으며, 종래 “거슬린다” 등의 감각적인 표현은 성능이 극단적으로 낮은 경우에 한정하여 사용하였다. 이러한 감각적 표현은 거주자의 성격이나 연령, 개성 등의 차이에 따라 달라지는 주관성이 강한 것이라 할 수 있으나, “들린다 - 들리지 않는다”의 표현은 정상청력을 갖고 있는 사람에게는 통상이 판단할 수 있고 오해를 초래할 우려가 적어 보다 객관적인 판단을 기대할 수 있기 때문이다. 또한 적용등급의 의미도 “좋다”, “일반적이다” 등과 같이 기준에 비해 보다 객관적인 표현으로 개정되었다.

1) 대한주택공사, “공동주택 내부소음 기준설정 연구 I”, 1990.12
2) 대한주택공사, “공동주택 바닥충격을 차단성능 기준 설정 연구”, 2001.12
바닥충격음레벨에 관한 기준 주파수특성 곡선과 그 등급을 표기하면 [그림 2.1]과 같다. 또한 집합주택에 대한 개정된 일본건축학회의 적용등급과 적용등급의 의미는 <표 2.2>, <표 2.3>과 같다.

[그림 2.1] 바닥충격음레벨에 관한 기준 주파수특성 곡선 (일본)

<표 2.2> 집합주택에서의 적용등급 (일본건축학회)

<table>
<thead>
<tr>
<th>구분</th>
<th>적용 등급</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>특급</td>
</tr>
<tr>
<td>경계바닥의 경량바닥충격음 차음등급</td>
<td>L_{L-40}</td>
</tr>
<tr>
<td>경계바닥의 중량바닥충격음 차음등급</td>
<td>L_{H-45}</td>
</tr>
</tbody>
</table>

* 목조건경, 경량철골조 또는 이와 유사한 구조의 집합주택에 적용 (1997년 추가)
표 2.3 적용등급의 의미 (일본건축학회)

<table>
<thead>
<tr>
<th>적용등급</th>
<th>차음성능의 수준</th>
<th>성능수준의 설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>특 급</td>
<td>차음성능상 특우수</td>
<td>특별히 높은 성능이 요구되는 경우의 성능수준</td>
</tr>
<tr>
<td>1 급</td>
<td>차음성능 우수</td>
<td>일본건축학회가 권장하는 좋은 성능수준</td>
</tr>
<tr>
<td>2 급</td>
<td>차음성능 표준</td>
<td>일반적인 성능수준</td>
</tr>
<tr>
<td>3 급</td>
<td>차음성능 다소 열악</td>
<td>부득이한 경우에 허용되는 성능수준</td>
</tr>
</tbody>
</table>

또한 <표 2.4>와 <표 2.5>는 일본 건축학회의 바닥충격음에 관한 차음등급 결정시 기초자료로 이용하였던 차음등급과 생활감과의 대응 예 및 공동주택의 경계바닥을 대상으로 한 경우의 평가적도와 사회적 반응의 대응 예를 나타낸 것이다.

표 2.4 차음등급과 생활감 (일본건축학회)

<table>
<thead>
<tr>
<th>차음 등급</th>
<th>바닥충격음</th>
<th>생활갑</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-35</td>
<td>조용할 때 들린다</td>
<td>들리지 않는다</td>
</tr>
<tr>
<td>L-40</td>
<td>멀리서 들리는 느낌</td>
<td>거의 들리지 않는다</td>
</tr>
<tr>
<td>L-45</td>
<td>떨림지연형 거슬리지 않는다는</td>
<td>섬들소리는 들린다</td>
</tr>
<tr>
<td>L-50</td>
<td>거의 거슬리지 않는다</td>
<td>캔소리는 들린다</td>
</tr>
<tr>
<td>L-55</td>
<td>약간 마음이 쓰인다</td>
<td>슬리퍼 소리도 들린다</td>
</tr>
<tr>
<td>L-60</td>
<td>약간 거슬린다</td>
<td>수저를 떨어뜨리도 들린다</td>
</tr>
<tr>
<td>L-65</td>
<td>잘 들려 거슬린다</td>
<td>동전이 떨어져도 들린다</td>
</tr>
<tr>
<td>L-70</td>
<td>매우 잘 들려 거슬린다</td>
<td>1원짜리 동전일지라도 들린다</td>
</tr>
<tr>
<td>L-75</td>
<td>매우 귀찮다</td>
<td>1원짜리 동전일지라도 들린다</td>
</tr>
<tr>
<td>비고</td>
<td>지음역의 음 높이 값</td>
<td>고음역의 음 높이 값</td>
</tr>
</tbody>
</table>
<표 2.5> 바닥충격음 평가척도와 사회적반응의 대응 예 (일본건축학회)

<table>
<thead>
<tr>
<th>바닥충격음</th>
<th>사용자, 보관관리자, 성능평가자</th>
<th>계획,설계자</th>
<th>시공,감리자</th>
</tr>
</thead>
<tbody>
<tr>
<td>차용등급</td>
<td>문제의식 없음</td>
<td>성능수준설정자</td>
<td>성능실현자</td>
</tr>
<tr>
<td>중량</td>
<td>경량</td>
<td>문제의식 존재</td>
<td></td>
</tr>
<tr>
<td>L-35 ~ 40</td>
<td>L-30</td>
<td>열 يمكنك 의식하고 쾌적한 생활 가능</td>
<td>말썽을 일으키며 해도 일으킬 수 없는 상태</td>
</tr>
<tr>
<td></td>
<td></td>
<td>열 يمكنك 의식하는 일도 아주 가끔 있지만 쾌적한 생활 가능</td>
<td>열림과 사거리 혹은 적은 경우에도 클래임은 발생하지 않는다</td>
</tr>
<tr>
<td>L-40 ~ 45</td>
<td>L-35</td>
<td>가끔 열 يمكنك 의식하는 일도 있지만 쾌적한 생활 가능</td>
<td>신경질적인 사람이 두임거리도 문제되지 않음</td>
</tr>
<tr>
<td></td>
<td>L-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-45 ~ 50</td>
<td>L-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L-50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L-55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L-55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L-60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L-65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L-70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L-75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L-80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L-85</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>비고</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

문제의식 없음 | 문제의식 존재 | 문제의식 존재 | 문제의식 존재 |

- L-35: 정밀한 공학적 생활 가능
- L-40: 적정한 공학적 생활 가능성
- L-45: 적정한 공학적 생활 가능
- L-50: 적정한 공학적 생활 가능
- L-55: 적정한 공학적 생활 가능
- L-60: 적정한 공학적 생활 가능
- L-65: 적정한 공학적 생활 가능
- L-70: 적정한 공학적 생활 가능
- L-75: 적정한 공학적 생활 가능
- L-80: 적정한 공학적 생활 가능
- L-85: 적정한 공학적 생활 가능

비고: 피해자 의식이 특히 강한 보통사항

- 지역주민운동이 일어나는 경우
- 주택공단, 공사, 시공회사 등
- 시공, 청부업자, 현장감리자

- L-35: 정밀한 공학적 생활 가능
- L-40: 적정한 공학적 생활 가능성
- L-45: 적정한 공학적 생활 가능
- L-50: 적정한 공학적 생활 가능
- L-55: 적정한 공학적 생활 가능
- L-60: 적정한 공학적 생활 가능
- L-65: 적정한 공학적 생활 가능
- L-70: 적정한 공학적 생활 가능
- L-75: 적정한 공학적 생활 가능
- L-80: 적정한 공학적 생활 가능
- L-85: 적정한 공학적 생활 가능

비고: 피해자 의식이 특히 강한 보통사항

- 지역주민운동이 일어나는 경우
- 주택공단, 공사, 시공회사 등
- 시공, 청부업자, 현장감리자
최근 일본에서는 사회적 요구에 의해 주택품질확보촉진법을 제정하여 2001. 4월부터 시행하고 있다. 이 법의 주요내용은 ① 주택성능표시제도, ② 분쟁처리체계의 정비, ③ 하자담당책임의 특례 등으로 이루어져 있으며, 이 법의 제정 배경은 <표 2.6>과 같다. 또한 주택품질확보촉진법에서 규정하고 있는 바닥충격을 대책등급의 기준은 <표 2.7>과 같다.

<표 2.6> 주택품질확보촉진법의 제정 배경

<table>
<thead>
<tr>
<th>사회적 배경</th>
<th>하자주택의 사회문제화, 고배 대지진을 계기로 주택성능에 관한 관심고조에 의해 주택과 관련된 다양한 문제나 과제의 지적</th>
</tr>
</thead>
</table>
| 주택취득자의 입장 | ① 계약서에의 주택하자기간(1~2년)이후 발생되는 하자에 대한 무상보수 요구 필요
② 주택성능을 표시하는 공통적인 기준이 없어 상호비교가 곤란하고 신뢰성이 저하
③ 주택에 관한 분쟁시 전문적인 처리기관이 없어 해결을 위해서는 많은 노력이 필요 |
| 주택공급자의 입장 | ① 주택성능을 표시하는 공통적인 기준이 없어 성능으로 경쟁하는데 있어 인센티브가 충분치 않으며, 소비자로부터 정확한 이해를 얻도록 하기 어려움
② 주택성능에 관한 claim 대응 등에 많은 노력이 요구 |

<표 2.7> 바닥충격을 대책등급

<table>
<thead>
<tr>
<th>성능등급(rank)</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>성능 수준</td>
<td>중량</td>
<td>L_H^{50}</td>
<td>L_H^{55}</td>
<td>L_H^{60}</td>
<td>L_H^{65}</td>
</tr>
<tr>
<td></td>
<td>경량</td>
<td>L_L^{45}</td>
<td>L_L^{50}</td>
<td>L_L^{55}</td>
<td>L_L^{60}</td>
</tr>
<tr>
<td>차음성능 수준</td>
<td>특히 우수</td>
<td>우수</td>
<td>기본</td>
<td>약간 낮음</td>
<td>그 외</td>
</tr>
</tbody>
</table>

주) L_L, L_H: 경량 및 중량충격음의 성능을 나타내는 평가기준곡선 (JIS A 1419-2)
2.3 미 국

미국에서 바닥충격음 평가방법으로 ISO에서 제안하고 있는 IIC(Impact Insulation Class)곡선을 사용하는 데, IIC값은 경량충격원(tapping machine)에 의한 1/3 옥타브밴드의 현장 측정치에 IIC기준곡선을 접했을 때 500Hz와 교차하는 값으로 구한다. FHA(Federal Housing Administration)에 의해 사용이 권장되고 있는 충격음의 기준 곡선은 [그림 2.2]와 같고, 그림에서 등급 1은 야간 집 밖에서 40dB(A) 이하(농촌 또는 고급 주택지역), 등급2는 40~45dB(A)(교외 일반주택지역), 등급3은 45dB(A) 이상(도시지역 일반의 최저)의 지역에 대해 적용하고 있다.

![그림 2.2] 바닥충격음에 대한 IIC 곡선(FHA)

HUD(The U.S. Department of Housing and Urban Development)에서 공동주택의 바닥에 규정하고 있는 차음성능의 권장치는 <표 2.8>과 같다. 이 기준은 자리적 위치, 경제적 조건, 바닥 구조의 기능에 따라 3등급으로 구분되어 있다. 등급 1은 야간에 외부 소음이 35~40dB(A)이거나 혹은 위치에 관계없이 8층 이상의 고층 공동주택에서 고급 건물인 경우에 적용되며, 등급 2는 표준치로서 외부소음을 합이 보통인 경우, 등급 3은 최저치로서 시끄러운 지역에 적용되고 있다.

한편 U.S Code (Part 51: Environmental criteria and standard)에서는 실내소음 목표치 (interior noise policy)로서 주야간 평균소음치(\(L_{DA}\)) 45dB (A) 이하를 권장하고 있다.
<표 2.8> 공동주택 경계바닥의 IIC 차음기준 (HUD)

<table>
<thead>
<tr>
<th>인접세대 간 실용도</th>
<th>바닥충격음 (IIC)</th>
<th>인접세대 간 실용도</th>
<th>바닥충격음 (IIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(상층) B(하층)</td>
<td>Grade I</td>
<td>Grade II</td>
<td>Grade III</td>
</tr>
<tr>
<td>첨실</td>
<td>55</td>
<td>52</td>
<td>48</td>
</tr>
<tr>
<td>거실</td>
<td>60</td>
<td>57</td>
<td>53</td>
</tr>
<tr>
<td>부엌</td>
<td>65</td>
<td>62</td>
<td>58</td>
</tr>
<tr>
<td>가족실</td>
<td>65</td>
<td>62</td>
<td>58</td>
</tr>
<tr>
<td>복도</td>
<td>65</td>
<td>62</td>
<td>58</td>
</tr>
<tr>
<td>가족실</td>
<td>55</td>
<td>52</td>
<td>48</td>
</tr>
<tr>
<td>복도</td>
<td>60</td>
<td>57</td>
<td>53</td>
</tr>
</tbody>
</table>

주) Grade I: 외부소음이 35~40dB(A) 또는 고층공동주택에서 8층 이상이고 고급건물
Grade II: 표준치로서 외부소음레벨이 보통인 경우(40~45dB(A))
Grade III: 최저치로서 시끄러운 지역(45dB(A))에 적용.

2.4 ISO (국제표준화기구)

바닥충격음에 대한 차음기준은 ISO 717로 제정되어 있으며, 이 기준은 건축물의 차음 성능을 적절히 평가하고 음향적인 요구에 대한 법규를 간단히 하고자 하는 데 그 목적이 있다. 바닥충격음의 기준은 [그림 2.3]과 같으며, 영국에서도 이 기준을 적용하고 있다. 차음성능의 평가 방법은 미국의 IIC 곡선에 의한 평가 방법과 동일하며, 소음의 시간에 따른 변화가 크지 않는 정상소음의 시간변화가 큰 경우에는 소음계를 사용하여 단순 dB(A)를 사용할 수 있지만 소음의 시간 변화가 큰 경우에는 등가소음도(Leq)를 사용하도록 하고 있다. ISO에서는 충격음 지수가 60인 경우를 최소 차음등급으로 규정하고 있으며, 건물의 종류별, 부위별 바닥판의 평가를 위한 차음성능 기준은 규명하지 않았다. 충격음 지수는 차음성능을 나타내는 지수이며, 다음 식에 의해 구한다.

\[I_i = 60 \text{dB} - M_i \]

단, \(I_i \): 충격음지수, \(M_i \): 충격음 방지를 위한 지수

충격음 방지를 위한 여유치 \(M_i \) 는 여러 가지 시공법의 구조에 대한 현장 성능을 나타내거나 권장치를 작성할 때 사용되며, 기준곡선을 상회하는 편차의 합을 측정계수로 나눈 값이 2dB을 초과해서는 안되며, 최대편차는 8dB를 넘어서는 안된다.
2.5 독 일

독일에서는 다음과 같은 여러 법에 의해 공동주택의 실내소음 발생을 억제하고 있는 실정이다.

- 민법 (제906조)
 토지 소유자가 이웃으로부터 가스, 증기, 염새, 연기, 매연, 열기, 소음·진동의 수인한
 도를 넘어 침해받는 경우 손해배상 청구권을 가짐
- 연방 질서위반법 (제117조 제1항)
 공공이나 이웃을 괴롭혀거나, 타인의 건강을 해칠 수 있는 불필요한 소음의 배출은
 위법이라 정하고, 이를 위반하면 과태료(약 630만원까지) 부과
- 공해방지법 (제11조, 14조)
 타인의 안면을 방해하는 일은 밤 10시부터 다음날 오전 7시까지 금지
 소음을 일으키는 가사 및 정원일은 월요일부터 토요일까지 오전 8시부터 12시, 오
 후 3시부터 6시 사이에만 해야하고, 오전 10시부터 다음날 오전 7시까지 이웃에 소
 음을 일으키는 악기연주 및 음향 재생기의 사용금지를 규정

한편 DIN 4109에서는 바닥충격음에 대한 기준 곡선을 제시하고 있으며, 측정치를 적용
할 때는 그 곡선을 평행이동한 압축 바닥충격음 판정량(TSM)으로 이용하고 있다. 이 기
준에는 충격음 지수는 없으나, 판정량인 여유치로서 차음성능을 규정하고 있다. ISO와는
달리 여유치를 구할 때 8dB의 최대편차 이상의 규정은 없으나, 기준곡선을 상회하는 부
분 측의 편차가 평균 2dB를 초과해서는 안 된다고 규정하고 있다. 단 100Hz와 3200Hz의 편차는 각 값의 1/2로 계산하도록 되어있다. 또한 건물의 종류에 따른 바닥의 최소한의 요구값과 권장치가 상세히 규정되어 있다.

[그림 2.4]는 기준곡선이며, <표 2.9>는 공동주택의 바닥판 차음성능 기준을 나타내고 있다.

![그림 2.4] 바닥충격음에 대한 기준음압레벨 곡선(DIN)

<table>
<thead>
<tr>
<th>건물구성요소</th>
<th>최소요구치 TSM in dB</th>
<th>권장치 TSM in dB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>건물완성 후 즉시 측정</td>
<td>2년 후 측정</td>
</tr>
<tr>
<td>아파트 천장과 작업실 사이의 천장</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>테라스아래 천장</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>사용될 수 있는 지붕공간 밑의 천장 (예: 다락)</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

주1) TSM: 바닥충격음에 대한 여유치
2.6 기 타

세계보건기구(WHO)에서는 1999년에 환경소음 가이드라인으로서 다음과 같이 제시하고 있으며, 등가소음 뿐만 아니라 피크시에 대해서도 제시하고 있어 본 연구의 기준 설정시 참고가 될 수 있다고 판단된다.

<표 2.10> WHO의 환경소음 가이드라인

<table>
<thead>
<tr>
<th>특성환경</th>
<th>건강영향</th>
<th>시간대</th>
<th>(L_{Aeq}(dB))</th>
<th>(L_{Amax\ fast}(dB))</th>
</tr>
</thead>
<tbody>
<tr>
<td>주거, 설내</td>
<td>회화방해 및 보통의 annoyance, 낮 또는 저녁시간대</td>
<td>35</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>침실</td>
<td>수면방해, 야간</td>
<td>30</td>
<td>8</td>
<td>45</td>
</tr>
</tbody>
</table>

한편 호주의 환경보호법(Environment Protection Act, 1997)에는 <표 2.11>과 같이 주거 공간내의 소음 기준을 정하고 있다. 그러나 이러한 기준은 등가소음레벨 기준으로서 우리나라일본에서 제시하고 있는 바다 충격을 기준(피크값으로 측정 및 평가)과는 다소 다르다고 할 수 있다. 단, 호주의 환경보호법에서도 건물별, 시간대별 기준을 제시하고 있음을 알 수 있으며, 특히 그 나라의 특성을 반영하여 <표 2.12>와 같이 설비장비류의 작동을 금지하고 있음을 알 수 있다.

<표 2.11> 주거공간(residential area)에서의 소음기준

<table>
<thead>
<tr>
<th>시간대</th>
<th>일반건물</th>
<th>공동주택</th>
<th>비 고</th>
</tr>
</thead>
</table>
| 주 간 | 45dB(A) | 40dB(A) | 07:00 ~ 22:00
(일요일 및 공휴일은 08:00 ~ 22:00) |
| 야 간 | 35dB(A) | 30dB(A) | 22:00 ~ 07:00
(일요일 및 공휴일은 22:00 ~ 08:00) |

<표 2.12> 소음 규제항목 및 적용시간 (Regulations: residential noise)

<table>
<thead>
<tr>
<th>Group</th>
<th>금지항목</th>
<th>적용시간</th>
</tr>
</thead>
</table>
| 3 | 설비기기류의 작동
(에어컨, 펌프류, 진공청소기 등) | 월~금: 22:00~07:00
주말/공휴일: 22:00~09:00 |
| 4 | 악기연주, 음을 발생시키는 장비
(라디오, 스테레오 등) | 월~목: 22:00~07:00,
금: 23:00~07:00
토/공휴일: 23:00~09:00,
일: 22:00~09:00 |
3장 바닥충격음 차단성능 측정 및 평가방법

3.1 측정 방법

본 평가에서의 측정방법의 주요 내용을 정리하여 나타내면 <표 3.1> 및 <표 3.2>와 같다.

<표 3.1> KS F 2810-1 ("바닥충격음 차단성능 현장 측정방법, 제1부: 표준경량충격원에 의한 방법")

<table>
<thead>
<tr>
<th>항목</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>적용범위</td>
<td>표준경량충격원(tapping machine)을 이용하여 현장에서 건축물의 바닥충격음 차단성능을 측정하는 방법을 규정.</td>
</tr>
<tr>
<td>정의</td>
<td>실내평균음압레벨 L_i : 수음실의 공간적, 시간적 평균음압레벨을 측정하고 이를 기준음압의 제공으로 나누어 상용로그 값을 취한 후 10배한 값 (dB)</td>
</tr>
<tr>
<td></td>
<td>(비고: 소음계의 주파수 보정특성 A를 통해 측정된 레벨을 A특성바닥충격음레벨 L_{A} 가 된다.)</td>
</tr>
<tr>
<td></td>
<td>규준화바닥충격음레벨 $L_{A} = L_i + 10 \log \left(A/A_0 \right)$, $A_0 = 10m^2$</td>
</tr>
<tr>
<td></td>
<td>표준화바닥충격음레벨 $L'_{A} = L_i - 10 \log \left(T/T_0 \right)$, T : 수음실의 진향시간, $T_0 = 0.5\text{초}$</td>
</tr>
<tr>
<td>측정장치</td>
<td>표준경량충격원 : 부속서1의 규정에 적합한 것을 사용한다.</td>
</tr>
<tr>
<td></td>
<td>소음계 : 보통소음계(KS C 1502) 또는 정밀소음계(KS C 1505)를 이용한다.</td>
</tr>
<tr>
<td></td>
<td>주파수분석기 : 울타브 또는 1/3 울타브밴드 분석기 (KS A 5113)</td>
</tr>
<tr>
<td>측정방법</td>
<td>측정은 울타브밴드 또는 1/3울타브밴드마다 실시한다.</td>
</tr>
<tr>
<td></td>
<td>바닥충격음의 발생 : 측정대상 바닥 위에 표준경량충격원을 설치하고 충격음을 발생시킨다. 충격원의 설치위치는 실의 주변벽으로부터 50cm 이상 떨어진 바닥평면으로 중앙점 부근의 1점을 포함하여 균등하게 분포하는 4점 이상으로 한다. 보와 리브를 갖는 이방성 바닥구조의 경우에는 각 헤머를 연결하는 선이 보와 리브의 방향에 대하여 45° 방향이 되도록 설치한다. 발생음의 레벨이 안정하게 된 이후에 측정을 하도록 한다.</td>
</tr>
<tr>
<td></td>
<td>비고 : 표준경량충격원의 타격에 의해 바닥 표면을 손상할 우려가 있을 경우에는 바닥충격음레벨의 발생에 큰 영향을 주지 않을 만한 종이 등을 붙이고 측정하여도 좋다.</td>
</tr>
<tr>
<td></td>
<td>실험실내평균음압레벨의 측정:</td>
</tr>
<tr>
<td></td>
<td>a) 고정미크로폰법 : 수음실 내에서 전장, 주위벽, 바닥면 등으로부터 0.5m 이상 떨어진 공간 내에, 서로 0.7m 이상 떨어진 4점의 측정점을 공간적으로 균등하게 분포시킨다.</td>
</tr>
<tr>
<td>SUPERCELL</td>
<td>측정방법</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
</tr>
</tbody>
</table>

b) 이동마이크로폰법 : 0.7m이상의 회전반경을 갖는 마이크로폰 이동장치를 사용하여 수음실 내의 천장, 주변 벽, 바닥면 등으로부터 0.5m이상 떨어진 공간내에서 마이크로폰을 연속적으로 회전시킨다. 이 회전은 바닥면에 대하여 정사지고 또한 각 벽면에 대하여 10°이상의 각도가 되도록 한다. 회전주기는 15초이상으로 한다.

평균화 시간 :

a) 고정마이크로폰법에 의한 경우 : 각 마이크로폰 설치 위치에 있어서 음압레벨의 평균화 시간은 측정주파수대역에 있어서 옥타브 범드 측정의 경우는 중심주파수가 250Hz이하의 주파수 대역에서는 3초이상, 500Hz 이상의 대역에서는 2초이상, 1/3옥타브 범드측정의 경우에는 중심주파수 400Hz이하의 주파수 대역에서는 6초이상, 500Hz 이상의 주파수대역에서는 4초 이상으로 하고, 그 사이의 등가음압레벨을 측정한다. 또한 A특성음압레벨을 측정하는 경우에는 평균화시간은 6초이상으로등가소음레벨을 측정한다.

b) 이동마이크로폰법에 의한 경우 : 평균화 시간은 마이크로폰 이동장치의 주기 이상으로서 30초이상으로 하고, 회전주기의 정수 배로 한다.

측정주파수범위 : ()내는 측정하는 것이 바람직한 주파수범위
 옥타브밴드 측정(Hz) : (63, 125, 250, 500, 1000, 2000, 4000)
 1/3옥타브밴드 측정(Hz) :
 (50, 63, 80), 100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150, (4000, 5000)

잔향시간의 측정 :

a) 수음실내 1점에 음원스피커를 설치하고 실내에 균등한 분포가 되도록 3점 이상의 측정점을 설치한다. 전체 측정점은 음원스피커, 벽 등의 설계면으로부터 1.0m이상 이격한다.

b) ISO 3382에서 규정하고 있는 옥타브밴드 또는 1/3 옥타브밴드마다 잔향감쇠곡선을 구한다. 주파수별 측정횟수는 노이즈 단속법에 의한 경우에 각 측정점에 있어서 3회 이상으로 한다.

c) 측정된 잔향감쇠곡선의 기울기로부터 잔향시간을 얻는다. (잔향감쇠곡선의 초기레벨에 대하여 -5dB부터 적어도 -25dB까지의 감쇠에 최소 2승법에 의한 직선회귀 등의 수법을 적용하여 잔향시간을 구한다.)

수음실의 등가흡음력 산출 : 잔향시간 평균치로부터 다음과식에 의해 산출한다. \(A = 0.16V T \), \(A \) :등가흡음력(㎡), \(V \) : 수음실의 용적(㎥), \(T \) : 수음실의 잔향시간(s)
측정방법
배경소음 영향의 보정 : 표준중량충격원을 작동할 때와 정지할 때의 음압레벨 차이가 6dB 이상인 경우에는 배경소음의 영향을 배제한 음압레벨을 다음식에 의해 구한다.

\[L = 10 \log \left(10^{L_{\text{ref}}/10} - 10^{L_{\text{ref}}/10} \right) \]

\(L \): 보정된 바닥충격음음압(dB), \(L_{\text{ref}} \): 배경소음이 포함된 바닥충격음음압(dB), \(L_{\text{ref}}' \): 배경소음음압(dB)
만약 그 차이가 6dB 미만이면 보정하지 않으며, 이 경우 음압레벨의 측정 결과를 참고치로 기록한다.

측정결과의 표시
규준화바닥충격음음압(\(L'_{a} \)) 및 표준화바닥충격음음압(\(L'_{aT} \))로 표시하며, 이 값은 주파수대역별로 소수점 이하 1자리까지 구하여 표 또는 그림형태로 나타낸다. 측정을 반복할 경우 모든 측정결과는 주파수대역별로 산술평균하여 나타낸다.

\[L = 10 \log \left(\frac{1}{n} \sum_{j=1}^{n} 10^{\frac{L_j}{10}} \right) \]

\(L_j \): 측정점 수
\(L'_{a} \)와 \(L'_{aT} \)값을 1/3옥타브밴드에서 옥타브밴드 값으로 변환하고 자 하면 다음식을 이용한다.

\[L'_{a, \text{act}} = 10 \log \left(\sum_{j=1}^{n} 10^{\frac{L'_{a, j}}{10}} \right) \]

\[L'_{aT, \text{act}} = 10 \log \left(\sum_{j=1}^{n} 10^{\frac{L'_{aT, j}}{10}} \right) \]

부속서1
(규정)
이 규격에 따라 바닥충격음 차단성능을 측정하는데 사용하는 표준중량충격원(tapping machine)의 사양에 대해서 규정 (상세한 사항은 생략)

<표 3.2> KS F 2810-2 ("바닥충격음 차단성능 현장 측정방법, 제2부: 표준중량충격원에 의한 방법")

<table>
<thead>
<tr>
<th>항 목</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>작용범위</td>
<td>표준중량충격원을 이용하여 건축물의 바닥충격음 차단성능을 측정하는 방법에 대해서 규정</td>
</tr>
</tbody>
</table>
| 정의 | 최대음압레벨 \(L_{F, \text{max}} \) : 소음계의 시간보정 특성 \(F \)를 이용하여 측정한 음압레벨의 최대값 (dB)
(비고: 소음계의 주파수 보정특성 \(A \)를 통해 측정된 최대음압레벨을 최대A 특성음압레벨 \(L_{A, F, \text{max}} \)이라 한다.)

바닥충격음음압 \(L_{F, \text{max}} \) : 측정대상 바닥을 표준중량충격원으로 가진하여 수음실에서 측정한 최대음압레벨의 에너지평균값 (dB)
(비고: 소음계의 주파수 보정특성 \(A \)를 통해 측정된 바닥충격음음압을 \(A \)특성 바닥충격음음압 \(L_{A, F, \text{max}} \)이라 한다.)
측정장치
표준중량충격원 : 부속서1의 규정에 적합한 것을 이용한다.
최대음압레벨의 측정 : 보통소음계(KS C 1502) 또는 정밀 소음계(KS C 1505)를 사용한다.
주파수분석기 : 욕타브 또는 1/3 옥타브밴드 분석기 (KS A 5113)

측정방법
측정은 욕타브밴드 또는 1/3옥타브밴드마다 실시한다.
바닥충격음의 발생 : 측정대상 바닥 위에 표준중량충격원을 이용해서 충격음을 발생시킨다. 표준충격원의 충격 위치는 실의 주변 벽으로부터 0.5m이상 떨어진 바닥 평면 내로 중앙점 부근 1점을 포함해서 평균적으로 분포하는 3~5점으로 한다.
마이크로폰의 설치방법 : 수음실 내에서 천장, 주위벽, 바닥면 등으로부터 0.5m이상 떨어진 공간 내에, 서로 0.7m이상 떨어진 4점 이상의 측정점을 공간적으로 균등하게 분포시킨다.
측정주파수범위 : () 내는 측정하는 것이 바람직한 주파수범위
董事长밴드 측정(Hz) : (31.5), 63, 125, 250, 500
1/3옥타브밴드 측정(Hz) : (25, 31.5, 40), 50, 63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630
최대음압레벨 측정 : 각 가전점마다 모든 측정점에서 소음계의 시간보정 특성 F를 이용해서 각 측정 주파수대역의 최대음압레벨을 측정한다.
배경소음 영향의 보정 : KS F 2810-1의 경우와 같다.

바닥충격음압레벨 산출
각 측정주파수대역에 있어서 가전점마다 모든 측정점에서 측정된 최대음 압레벨의 에너지 평균치 \(L_{F_{\text{max}, k}} \)를 다음과의 식에 의해 계산한다.
\[
L_{F_{\text{max}, k}} = 10 \log \left(\frac{1}{m} \sum_{j=1}^{m} 10^{L_{\text{max}, j}/10} \right),
\]
\(L_{\text{max}, j} \) : \(j \)번째 측정점에서의 최대음압레벨측정값(dB), \(m \) : 측정점 수
위의 식에서 구한 가전점마다의 실내평균음압레벨을 산술평균 하여 각 주파수대역에 있어서의 바닥충격음압레벨 \(L_{i, F_{\text{max}}} \)로 한다.

측정결과의 표시
표 또는 그림형태로 나타낸다.
1/3옥타브밴드의 측정에 의한 결과로부터 욕타브밴드마다의 값을 계산할 경우에는 다음과의 식에 의해 한다.
\[
L_{i, F_{\text{max}, 1/3}} = 10 \log \left(\sum_{j=1}^{3} 10^{L_{\text{max}, j, 1/3}/10} \right)
\]
적용범위: 표준중량충격원의 시랑에 대해서 규정
모양: 표준중량충격원이 바닥에 접하는 부분은 곡률반경 (90~250)㎜의 볼록곡면으로 하고 바닥면에의 접촉면적은 250㎠이하로 한다.

충격력 특성: 충격시간 (20±2)ms로 단봉형의 충격파형을 갖고 그림과 같은 충격력 에너지 스펙트럼 특성(옥타브렌드 충격력 폭로레벨)을 갖는 것으로 한다.

<table>
<thead>
<tr>
<th>부속서1 (규정)</th>
<th>부속서1 그림1 표준중량충격원의 충격력 폭로레벨 주파수특성</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[그림]
표준중량충격원의 충격력 폭로레벨 주파수특성</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>부속서2 (참고)</th>
<th>일반사항: 부속서 1에서 규정하는 충격력 특성을 갖는 표준중량충격원의 보기를 나타낸다.
충격원의 보기: 다음 특성을 갖는 타이어를 높이 0.85m로부터 자유낙하시킴으로써 충격력 특성을 실험할 수 있다.
a) 공기압 : (2.4±0.2)×10⁵ Pa, b) 충격원의 유효질량 : (7.3±0.2)㎏
c) 반발계수 : (0.8±0.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>그림은 타이어 충격원의 0.85m 낙하높이에서의 충격력 파형을 나타낸 것이다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>부속서3 (참고)</th>
<th>부속서 1에서 규정하는 표준중량충격원의 충격력 특성을 교정하기 위한 측정시스템 및 방법을 나타낸다. (상세한 사항은 생략)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[그림]
타이어 충격원의 충격력 파형</td>
</tr>
</tbody>
</table>
3.2 평가 방법

3.2.1 한국산업규격(안)
본 평가에서 사용한 역A특성 평가방법은 경량충격음의 경우 <표 3.3>과 같으며, 중량 충격음의 경우 <표 3.4>와 같다.

<표 3.3> "건물 및 건물부재의 바닥충격음 차단성능 평가방법“ 제1부:
표준경량충격원에 대한 차단성능 규격(안)

<table>
<thead>
<tr>
<th>부속서 1 (규정)</th>
<th>건축물 바닥충격음 차단성능의 역 A특성곡선에 의한 평가</th>
</tr>
</thead>
<tbody>
<tr>
<td>항 목</td>
<td>내 용</td>
</tr>
<tr>
<td>적용범위</td>
<td>본 부속서는 표준경량충격원에 대한 건물 및 건물부재의 바닥충격음 차단성능을 역 A특성곡선에 의한 평가하는 방법을 규정한다.</td>
</tr>
</tbody>
</table>
| 정 의 | 바닥충격음 차단성능 단일수치 평가량: 본 부속서에서 규정하는 방법에 따라 평가한 값 (dB).
비고: 단일수치 평가량의 용어 및 기호는 측정종류에 따라 다르며, 부속서1의 표 1에 따른다. 본 부속서에 따른 평가방법은 옥타브밴드 측정결과에 적용한다. 측정 결과가 1/3옥타브밴드인 경우에는 옥타브밴드 값으로 환산하여 적용한다. |

<table>
<thead>
<tr>
<th>부속서1 표1</th>
<th>바닥충격음 차단성능 단일수치 평가량 (옥타브밴드)</th>
</tr>
</thead>
<tbody>
<tr>
<td>정의</td>
<td></td>
</tr>
<tr>
<td>규격</td>
<td>KS F 2810-1</td>
</tr>
<tr>
<td>명칭</td>
<td>바닥충격음배럴</td>
</tr>
<tr>
<td>기호</td>
<td>L_i 역A특성 가중 바닥충격음배럴</td>
</tr>
<tr>
<td></td>
<td>L'_i 역A특성 가중결합 화 비</td>
</tr>
<tr>
<td></td>
<td>L'_{nT} 역A특성 가중표준화 바닥충격음배럴</td>
</tr>
<tr>
<td></td>
<td>$L'_{2nT,AW}$ 역A특성 가중표준화 바닥충격음배럴</td>
</tr>
<tr>
<td>역 A특성곡선</td>
<td>본 부속서에 의하여 건축물의 바닥충격음 차단성능평가에 이용되는 곡선</td>
</tr>
</tbody>
</table>

역 A특성곡선: 본 부속서에 의하여 건축물의 바닥충격음 차단성능평가에 이용되는 곡선
단일 수치 평가량 구하는 방법

비교의 방법: 중성주파수 125~2000Hz의 옥타브대역 측정결과를 연결한 곡선에서 기준곡선을 상하로 1dB 간격으로 이동시켜, 5개의 옥타브밴드에 대해서 측정값이 기준곡선을 상회하는 값의 총합이 10.0dB를 넘지 않는 범위에서 가능한 한 기준곡선을 낮게 위치하는 곳까지 이동시킨다. 이상의 절차에 따라 이동한 기준곡선의 500Hz대역에 있어서의 값(dB)을 각각 \(L_{i,AW}, L'_{n,AW}, L'_{n,T,AW} \) (부속서 1 표1 참조)의 값으로 한다.

비고1: 1/3옥타브밴드로 측정된 결과는 아래식을 이용하여 옥타브밴드의 값으로 합성한다. 그리고 이 값을 KS A 0021(수치의 맷셈법)에 의해 소수점 이하는 반올림하여 상기 방법에 의해 평가한다.

\[
X_{i/3} = 10 \log \left(10^{X_{i,1/3} + 10} + 10^{X_{i,2/3} + 10} + 10^{X_{i,3/3} + 10} \right)
\]

여기서, \(X_{i,1/3} \)는 옥타브밴드의 값(dB), \(X_{i,2/3}, X_{i,3/3} \)는 해당 옥타브밴드에 포함되는 3개의 1/3옥타브밴드의 값(dB)

비고2: 측정치의 평가결과가 \(XY \)인 경우에는 \(L_{i,AW} \sim XY \)로 표시

부속서 1 표2 바닥충격을 차단성능 평가 기준치

<table>
<thead>
<tr>
<th>주파수[Hz]</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>기준치[dB]</td>
<td>83</td>
<td>73</td>
<td>66</td>
<td>60</td>
<td>57</td>
<td>56</td>
</tr>
</tbody>
</table>

부속서 1 그림 1 역 A특성 기준곡선
| 본 체 |
|---|---|
| 항 목 | 내용 |
| 적용범위 | 표준중량충격원을 이용한 측정한 건물 및 건물부재의 바닥충격음 차단성능 평가방법을 규정한 것으로서 KS F 2810-2에 의한 1/3옥타브밴드 또는 옥타브밴드의 측정결과에서 바닥충격음 차단성능을 단일수치 평가량으로 평가하는 방법에 대하여 규정한다. |

| 정 의 | 바닥충격음 차단성능 단일수치 평가량 : 본 규격에서 규정하는 방법에 의해서 평가한 값 (dB) |
| 비고 : 단일수치 평가량의 용어 및 기호는 표1에 따른다. 본 규격에 따른 평가방법은 옥타브밴드 측정결과에 따라 적용한다. 측정결과가 1/3옥타브밴드인 경우에는 옥타브밴드의 값으로 환산하여 적용한다. |
| 역 A특성곡선 : 본 규격에 의하여 건축물의 바닥충격음 차단성능평가에 이용되는 곡선 |

| 표1 바닥충격음 차단성능 단일수치 평가량 (옥타브밴드) |
|---|---|
| | 평가량 명칭과 기호 | 단일수치 평가량 |
| 규격 | 명칭 | 기호 | 명칭 | 기호 |
| KS F 2810-2 | 바닥충격음레벨 | $L_{i,F_{max}}$ | 역A특성 가중 바닥충격음레벨 | $L_{i,F_{max},AW}$ |
KS F 2810-2에 의해 측정된 옥타브밴드 측정결과 또는 1/3 옥타브밴드 측정결과로부터 계산한 옥타브밴드레벨을 규정한 기준치(표2)와 비교하여 평가한다.

기준치 : 측정치와의 기준이 되는 기준값은 표2에 나타낸다. 그림1은 이것은 기준곡선으로 나타낸 것이다.

표2 비달충격을 차단성능 평가 기준치

<table>
<thead>
<tr>
<th>주파수[Hz]</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>기준치[dB]</td>
<td>83</td>
<td>73</td>
<td>66</td>
<td>60</td>
<td>57</td>
<td>56</td>
</tr>
</tbody>
</table>

그림1 역A특성 기준곡선

비교의 방법 : 중심주파수 63~500Hz의 옥타브대역 측정결과를 연결한 곡선에 대해서 기준곡선을 상하로 1dB 간격으로 이동시켜, 4개의 옥타브밴드에 대해서 측정값이 기준곡선을 상회하는 값의 총합이 8.0dB를 넘지 않는 범위에서 가능한 한 기준곡선을 낮게 위치하는 곳까지 이동시킨다. 이상의 절차에 따라 이동한 기준곡선의 500Hz대역에 있어서의 값(dB)을 각각 \(L_{i,F_{max,AW}} \) (표1 참조)의 값으로 한다.

비고1 : 1/3옥타브밴드로 측정된 결과는 아래식을 이용하여 옥타브밴드의 값으로 할당한다. 그리고 이 값을 KS A 0021(수치의 빗물)'에 의해 소수점 이하는 반올림하여 상기 방법에 의해 평가한다.

\[
X_{1/1} = 10 \log \left(10^{X_{1a,1}} + 10^{X_{1a,2}} + 10^{X_{1a,3}} \right)
\]

여기서, \(X_{1/1} \)는 옥타브밴드의 값(dB), \(X_{1a,1}, X_{1a,2}, X_{1a,3} \)는 해당 옥타브밴드에 포함되는 3개의 1/3옥타브밴드의 값(dB)

비고2 : 측정치 평가결과가 \(XY \)인 경우 \(L_{i,F_{max,AW},H-XY} \)로 표시
3.2.2 단일수치 평가량 산출 예

역A특성 가중 바닥충격음레벨에 의한 평가 (중량충격음의 경우)
① KS F 2810-1에 의거 바닥충격음레벨 측정 ($L_{i, F_{max}}$)
② 역A특성 기준곡선을 상하로 1dB 간격으로 이동하여, 기준곡선을 상회하는 주파수별 바닥충격음레벨의 합이 8dB 이하가 되는 최대지점을 선정
③ 역A특성 가중 바닥충격음레벨 산정 ($L_{i, F_{max, A_W}}$)
⇒ 역A특성 기준곡선 500Hz 주파수대역의 값

<table>
<thead>
<tr>
<th>주파수 [Hz]</th>
<th>측정치 [dB]</th>
<th>기준곡선</th>
<th>기준곡선 상회치 [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>79.0</td>
<td>74</td>
<td>5.0</td>
</tr>
<tr>
<td>125</td>
<td>65.7</td>
<td>64</td>
<td>1.7</td>
</tr>
<tr>
<td>250</td>
<td>57.0</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>38.8</td>
<td>51</td>
<td>0</td>
</tr>
</tbody>
</table>

기준곡선 상회치의 합계: 6.7 (≤ 8.0)
$L_{i, F_{max, A_W}} = 51$

[그림 3.1] 역A특성 가중 바닥 충격음 레벨 평가 예
장 바닥충격음 성능평가

4.1 측정 개요

바닥충격음레벨은 총 5개 세대 거실에서 측정하였다. 거실의 바닥구조는 [그림 4.1]과 같이 구성되어 있다. 평면도상의 충격원 및 수음점 위치는 [그림 4.2] ~ [그림 4.6]과 같다.

측정세대 현황은 <표 4.1>과 같다.

![그림 4.1] 거실 바닥 구조 단면도

<표 4.1> 측정세대 현황

<table>
<thead>
<tr>
<th>No.</th>
<th>type</th>
<th>측정세대</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>A Type</td>
<td>1301/1201</td>
</tr>
<tr>
<td>R2</td>
<td>B Type</td>
<td>1302/1202</td>
</tr>
<tr>
<td>R3</td>
<td>C Type</td>
<td>1303/1203</td>
</tr>
<tr>
<td>R4</td>
<td>D Type</td>
<td>1305/1205</td>
</tr>
<tr>
<td>R5</td>
<td>E Type</td>
<td>1307/1207</td>
</tr>
</tbody>
</table>
[그림 4.2] 충격원 및 수음점 위치 - A type

[그림 4.3] 충격원 및 수음점 위치 - B type
[그림 4.4] 충격원 및 수음점 위치 - C type

[그림 4.5] 충격원 및 수음점 위치 - D type
[그림 4.6] 충격원 및 수음점 위치 - E type
4.2 바닥충격음 차단성능 측정

4.2.1 측정 방법

바닥충격음 평가를 위해 2절에서 기술한 방법(KS F 2810-1 및 2)에 의해 측정하였다. 경량 충격음 성능 레벨의 경우는 현장에서 4회 이상 측정 평균한 아래 잔향시간을 사용하여 흡음률을 구하였으며, 최종적으로 A특성 규준화 레벨로 나타내었다.

<표 4.2> 각 측정장소의 평균 잔향시간

<table>
<thead>
<tr>
<th>구분</th>
<th>1/4 옥타브 밴드 주파수별 잔향시간(sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63</td>
</tr>
<tr>
<td>A type</td>
<td>1.95</td>
</tr>
<tr>
<td>B type</td>
<td>1.93</td>
</tr>
<tr>
<td>C type</td>
<td>1.53</td>
</tr>
<tr>
<td>D type</td>
<td>1.93</td>
</tr>
<tr>
<td>E type</td>
<td>2.33</td>
</tr>
</tbody>
</table>

4.2.2 측정 결과

R1(A type)의 역 A특성 경량 충격음 레벨은 50 dB로 나타났다. 이는 경량충격음에 대한 법적인 규제 기준치(58 dB 이하)를 만족하고 있었으며, 3등급(53 dB 이하) 수준임을 알 수 있다. 역 A특성 중량 충격음 레벨은 50 dB로 나타났다. 이는 중량충격음에 대한 법적인 규제 기준치(50 dB 이하)를 만족하고 있었으며, 이는 4등급(47-50 dB 이하) 수준임을 알 수 있다.

R2(B type)의 역 A특성 경량 충격음 레벨은 52 dB로 나타났다. 이는 경량충격음에 대한 법적인 규제 기준치(58 dB 이하)를 만족하고 있었으며, 3등급(53 dB 이하) 수준임을 알 수 있다. 역 A특성 중량 충격음 레벨은 50 dB로 나타났다. 이는 중량충격음에 대한 법적인 규제 기준치(50 dB 이하)를 만족하고 있었으며, 이는 4등급(47-50 dB 이하) 수준임을 알 수 있다.
R3 (C type)의 역 A특성 경량 충격음 레벨은 49 dB로 나타났다. 이는 경량충격음에 대한 법적인 규제 기준치 (58 dB 이하)를 만족하고 있었으며, 3등급 (53 dB 이하) 수준임을 알 수 있다. 역 A특성 중량 충격음 레벨은 49 dB로 나타났다. 이는 중량충격음에 대한 법적인 규제 기준치 (50 dB 이하)를 만족하고 있었으며, 이는 4등급 (47~50 dB 이하) 수준임을 알 수 있다.

R4 (D type)의 역 A특성 경량 충격음 레벨은 48 dB로 나타났다. 이는 경량충격음에 대한 법적인 규제 기준치 (58 dB 이하)를 만족하고 있었으며, 2등급 (48 dB 이하) 수준임을 알 수 있다. 역 A특성 중량 충격음 레벨은 50 dB로 나타났다. 이는 중량충격음에 대한 법적인 규제 기준치 (50 dB 이하)를 만족하고 있었으며, 이는 4등급 (47~50 dB 이하) 수준임을 알 수 있다.

R5 (E type)의 역 A특성 경량 충격음 레벨은 49 dB로 나타났다. 이는 경량충격음에 대한 법적인 규제 기준치 (58 dB 이하)를 만족하고 있었으며, 3등급 (53 dB 이하) 수준임을 알 수 있다. 역 A특성 중량 충격음 레벨은 50 dB로 나타났다. 이는 중량충격음에 대한 법적인 규제 기준치 (50 dB 이하)를 만족하고 있었으며, 이는 4등급 (47~50 dB 이하) 수준임을 알 수 있다.

이상의 결과를 종합하면, 평균 경량 충격음 레벨은 50 dB로 3등급, 평균 중량 충격음 레벨은 50 dB로 4등급 수준으로 나타났다.

각 바닥구조에 대한 1/1 옥타브 밴드 주파수별 바닥충격음레벨을 살펴보면 [그림 4.7]-[그림 4.11]과 같다.
<표 4.3> 바닥충격음 레벨 측정 결과

<table>
<thead>
<tr>
<th>측정지점</th>
<th>구분</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1k</th>
<th>2k</th>
<th>역수복성 레벨</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>A Type</td>
<td>경량</td>
<td>-</td>
<td>63.3</td>
<td>55.0</td>
<td>53.9</td>
<td>50.9</td>
<td>43.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>중량</td>
<td>76.5</td>
<td>67.4</td>
<td>47.7</td>
<td>36.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R2</td>
<td>B Type</td>
<td>경량</td>
<td>-</td>
<td>62.2</td>
<td>55.5</td>
<td>55.6</td>
<td>53.5</td>
<td>48.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>중량</td>
<td>77.6</td>
<td>66.2</td>
<td>48.0</td>
<td>39.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R3</td>
<td>C Type</td>
<td>경량</td>
<td>-</td>
<td>60.9</td>
<td>56.6</td>
<td>52.6</td>
<td>50.4</td>
<td>45.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>중량</td>
<td>77.6</td>
<td>64.0</td>
<td>49.6</td>
<td>38.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R4</td>
<td>D Type</td>
<td>경량</td>
<td>-</td>
<td>61.6</td>
<td>54.2</td>
<td>49.7</td>
<td>49.3</td>
<td>43.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>중량</td>
<td>76.5</td>
<td>66.4</td>
<td>46.9</td>
<td>37.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R5</td>
<td>E Type</td>
<td>경량</td>
<td>-</td>
<td>62.9</td>
<td>55.8</td>
<td>50.3</td>
<td>50.1</td>
<td>44.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>중량</td>
<td>76.8</td>
<td>66.4</td>
<td>46.9</td>
<td>37.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>경량 평균</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>중량 평균</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>
| 측정장소 | 구분 | 63 | 125 | 250 | 500 | 1k | 2k | 역A복합
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>A Type</td>
<td>경량</td>
<td>-</td>
<td>63.3</td>
<td>55.0</td>
<td>53.9</td>
<td>50.9</td>
<td>43.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>중량</td>
<td>76.5</td>
<td>67.4</td>
<td>47.7</td>
<td>36.7</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

[그림 4.7] R1(A type) 거실의 바닥충격음레벨 주파수 특성
<table>
<thead>
<tr>
<th>측정장소</th>
<th>구분</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1k</th>
<th>2k</th>
<th>역A복싱 레벨</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>B Type</td>
<td>경량</td>
<td>-</td>
<td>62.2</td>
<td>55.5</td>
<td>55.6</td>
<td>53.5</td>
<td>48.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>중량</td>
<td>77.6</td>
<td>66.2</td>
<td>48.0</td>
<td>39.5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

[그림 4.8] R2(B type) 거실의 바닥충격음레벨 주파수 특성
<table>
<thead>
<tr>
<th>측정장소</th>
<th>구분</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1k</th>
<th>2k</th>
<th>역소폭성 레벨</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3 C Type</td>
<td>경량</td>
<td>-</td>
<td>60.9</td>
<td>56.6</td>
<td>52.6</td>
<td>50.4</td>
<td>45.4</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>중량</td>
<td>77.6</td>
<td>64.0</td>
<td>49.6</td>
<td>38.3</td>
<td>-</td>
<td>-</td>
<td>49</td>
</tr>
</tbody>
</table>

[그림 4.9] R3(C type) 거실의 바닥충격음레벨 주파수 특성
| 측정장소 | 구분 | 63 | 125 | 250 | 500 | 1k | 2k | 역A복음

| R4 | D Type | 경량 | - | 61.6 | 54.2 | 49.7 | 49.3 | 43.5 | 48 |
| | | 중량 | 76.5 | 66.4 | 46.9 | 37.5 | - | - | 50 |

[그림 4.10] R4(D type) 거실 바닥충격음레벨 주파수 특성
<table>
<thead>
<tr>
<th>측정장소</th>
<th>구분</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1k</th>
<th>2k</th>
<th>역소폭성 레벨</th>
</tr>
</thead>
<tbody>
<tr>
<td>R5(E Type)</td>
<td>경량</td>
<td>-</td>
<td>62.9</td>
<td>55.8</td>
<td>50.3</td>
<td>50.1</td>
<td>44.8</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>중량</td>
<td>76.8</td>
<td>66.4</td>
<td>46.9</td>
<td>37.9</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
</tbody>
</table>

[그림 4.11] R5(E type) 거실의 바닥충격음레벨 주파수 특성
5장 결론

부산광역시 범내골역 이즈팰리스 바닥 충격음레벨을 측정한 결과는 다음과 같다.

역 A특성 경량 충격음 레벨은 48~52dB로 나타났다. 평균 경량 충격음 레벨은 50 dB로 3등급 수준으로 나타났다.

역 A특성 중량 충격음 레벨은 49~50dB로 나타났다. 평균 중량 충격음 레벨은 50 dB로 4등급 수준으로 나타났다.

바닥충격음레벨 측정 결과

<table>
<thead>
<tr>
<th>측정장소</th>
<th>경량 바닥충격음레벨</th>
<th>중량 바닥충격음레벨</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>50 3급</td>
<td>50 4급</td>
</tr>
<tr>
<td>R2</td>
<td>52 3급</td>
<td>50 4급</td>
</tr>
<tr>
<td>R3</td>
<td>49 3급</td>
<td>49 4급</td>
</tr>
<tr>
<td>R4</td>
<td>48 2급</td>
<td>50 4급</td>
</tr>
<tr>
<td>R5</td>
<td>49 3급</td>
<td>50 4급</td>
</tr>
<tr>
<td>평균</td>
<td>50 3급</td>
<td>50 4급</td>
</tr>
</tbody>
</table>
참고 문헌

1) 대한주택공사, 1990.12, 「공동주택 내부소음 기준설정 연구(Ⅰ) - 바닥충격음의 차음성능 기준」
2) 대한주택공사, 1987.12, 「공동주택 바닥충격음을 저감방안에 관한 실험연구」
3) 대한주택공사·현대건설(주)·금강종합건설(주), 1996.9, 「온돌시스템 개발 연구」
4) 럭키개발(주), 1989.6, 「공동주택 내부소음 저감방안에 관한 연구」
5) 김명준, 1999.6, "공동주택 바닥충격음의 부위별 전달특성 평가", 한양대학교 대학원 박사학위 논문
6) 김명준·손장열·김흥식, 1998.9, "공동주택 바닥충격음성능에 미치는 영향요인에 관한 연구", 대한건축학회논문집, 14(9), pp.167~178
7) 윤창연·손장열·김흥식·김명준, 1996.10, "실내 홍음음이 바닥충격음에 미치는 영향에 관한 실험적 연구", 대한건축학회학술발표논문집, 16(2), pp.327~330
8) 김선우·손철봉·송용식, 1988.2, "공동주택 바닥충격음차음성능개선을 위한 실험적 연구(Ⅰ)", 대한건축학회논문집, 4(1), pp.279~287
9) 장길수·이태강·김선우, 1988.6, "공동주택 바닥충격음의 차단성능 평가방법 설정을 위한 기초적 연구(Ⅰ)", 대한건축학회논문집, 4(3), pp.227~235
10) 박병전·신영무, 1992, "공동주택 둔바닥구조의 바닥충격음레벨 측정", 한국음향학회지, 11(2), pp.38~48
11) 大脇雅直・高倉史洋・山下恭弘, 1997.9, "大型スラブ工法の重量床衝撃音レベルについて、その2 重量床衝撃音レベル観測式の適用", 日本建築学会大会学術講演概要集, pp.163~164
12) 福島寛和・井上勝夫, 1954, "床衝撃音に関する基本事項", 建築技術, pp.106~109
13) 木村 羽・大川平一郎・井上勝夫, 1995.10, "重量床衝撃源の意義と望ましい衝撃力特性について", 日本建築学会技術報告集, 第1号, pp.199~202
14) 橋 秀樹, 1994, "小特集-建築分野における固体音抑制への流れ", 日本音響学会誌 50巻 4号, pp.305~306
15) 安岡正人, 1982, "騒音振動対策ハンドブック", 技報堂
16) 木村 羽・安岡正人, 1976, "建築物の遮音性能基準(JIS案)について", 日本音響学会誌, Vol.32, No.10
부록. 측정사진
측정사진

음원실 경량충격음 발생

음원실 중량충격음 발생

수음실 측정
소음진동측정대행업등록증
소음진동기술사사무소등록증
등록번호 제 4 호

촉정대행업 등록증

<table>
<thead>
<tr>
<th>[]대기</th>
<th>[]수질</th>
<th>[]소음·진동</th>
<th>[]실내공기질</th>
<th>[]약취</th>
</tr>
</thead>
<tbody>
<tr>
<td>성명 (법인의 경우 대표자)</td>
<td>김 하 근</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>상호(사업장명칭)</td>
<td>한국환경설계(주)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>사업장소재지</td>
<td>서울시 송파구 석촌호수로138 202호(삼전동)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(전화번호 : 02 - 401 - 3825)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>실험실소재지</td>
<td>상 동</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(전화번호 : 02 - 401 - 3825)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>총정대행항목</td>
<td>소음·진동 자가측정 대상 항목</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>등록조건</td>
<td>총정대행업자의 준수사항을 준수할 것</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

「환경분야 시험·검사 등에 관한 법률」 제16조제3항과 같은 법 시행규칙 제14조제6항에 따라 총정대행업의 등록을 하였음을 증명합니다.

2014년 04 월 03 일

송파구청장
기술탐사처의 개설동록증

사무소명칭: 한국환경설계(주) (□ 개인 □ 법사적)
기술탐사명: 김하근 생년월일: 1962.08.15
소 재 지: 서울특별시 송파구 석촌호수로 138 (삼전동) 202호 전화번호: 02-401-3825
기술 분야: 환경
기술 범위: 소음,진동
등록연월일: 2008년 02월 01일

「기술사법」제6조제1항 및 같은 법 시행령 제26조제3항에 따라 미래창조과학부장관의 권한을 위탁받아 위와 같이 기술탐사사무소의 개설동록을 받았음을 증명합니다.

2014년 03월 20일

한국기술사회장
참여기술자 명단

<table>
<thead>
<tr>
<th>성 명</th>
<th>직 위</th>
<th>자격증 번호</th>
<th>참여업무내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>김 하 근</td>
<td>대표이사</td>
<td>공학박사 소음진동기술사</td>
<td>용역 총괄</td>
</tr>
<tr>
<td>이 장 옥</td>
<td>팀 장</td>
<td>공학석사 건축 기사</td>
<td>보고서 작성</td>
</tr>
<tr>
<td>김 규 환</td>
<td>팀 장</td>
<td>공학사</td>
<td>소음측 분석</td>
</tr>
<tr>
<td>우 중 평</td>
<td>팀 장</td>
<td>공학석사</td>
<td>소음측 분석</td>
</tr>
<tr>
<td>서 성 범</td>
<td>대 리</td>
<td>공학사</td>
<td>소음측 분석</td>
</tr>
</tbody>
</table>

한국환경설계(주)
소음·진동기술사사무소, 방지시설업등록(등록번호 제3호)
서울특별시 송파구 석촌호수로 138 202호
TEL: 02-401-3825~6, FAX: 02-401-3820